Pulsed Forces Timed by a Ratchet-like Mechanism Drive Directed Tissue Movement during Dorsal Closure

نویسندگان

  • Jerome Solon
  • Aynur Kaya-Çopur
  • Julien Colombelli
  • Damian Brunner
چکیده

Dorsal closure is a tissue-modeling process in the developing Drosophila embryo during which an epidermal opening is closed. It begins with the appearance of a supracellular actin cable that surrounds the opening and provides a contractile force. Amnioserosa cells that fill the opening produce an additional critical force pulling on the surrounding epidermal tissue. We show that this force is not gradual but pulsed and occurs long before dorsal closure starts. Quantitative analysis, combined with laser cutting experiments and simulations, reveals that tension-based dynamics and cell coupling control the force pulses. These constitutively pull the surrounding epidermal tissue dorsally, but the displacement is initially transient. It is translated into dorsal-ward movement only with the help of the actin cable, which acts like a ratchet, counteracting ventral-ward epidermis relaxation after force pulses. Our work uncovers a sophisticated mechanism of cooperative force generation between two major forces driving morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closing in on Mechanisms of Tissue Morphogenesis

It remains largely unknown how large-scale tissue movements during development emerge from the interplay of different tensile forces associated with actomyosin networks. Solon et al. (2009) now report that a ratchet-like mechanism drives the movement of epithelial sheets during dorsal closure in embryos of the fruit fly Drosophila.

متن کامل

Drosophila Morphogenesis: The Newtonian Revolution

Recent quantitative modeling of dorsal closure in the fruitfly Drosophila has revealed how multiple forces drive sealing of the two symmetrical epithelial sheets. A predictive model based on the new data allows gene function to be linked to the forces that drive tissue movement.

متن کامل

Integration of contractile forces during tissue invagination

Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reduci...

متن کامل

Nonmuscle Myosin II Generates Forces that Transmit Tension and Drive Contraction in Multiple Tissues during Dorsal Closure

BACKGROUND The morphogenic movements that characterize embryonic development require the precise temporal and spatial control of cell-shape changes. Drosophila dorsal closure is a well-established model for epithelial sheet morphogenesis, and mutations in more than 60 genes cause defects in closure. Closure requires that four forces, derived from distinct tissues, be precisely balanced. The pro...

متن کامل

Complete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive dorsal closure in Drosophila

Drosophila's dorsal closure provides an excellent model system with which to analyze biomechanical processes during morphogenesis. During native closure, the amnioserosa, flanked by two lateral epidermal sheets, forms an eye-shaped opening with canthi at each corner. The dynamics of amnioserosa cells and actomyosin purse strings in the leading edges of epidermal cells promote closure, whereas t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2009